MakeItFrom.com
Menu (ESC)

EN 1.4509 Stainless Steel vs. S31260 Stainless Steel

Both EN 1.4509 stainless steel and S31260 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 83% of their average alloy composition in common.

For each property being compared, the top bar is EN 1.4509 stainless steel and the bottom bar is S31260 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
260
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 21
23
Fatigue Strength, MPa 170
370
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
80
Shear Strength, MPa 330
500
Tensile Strength: Ultimate (UTS), MPa 530
790
Tensile Strength: Yield (Proof), MPa 260
540

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 570
450
Maximum Temperature: Mechanical, °C 890
1100
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
16
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
20
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.9
Embodied Energy, MJ/kg 41
53
Embodied Water, L/kg 120
180

Common Calculations

PREN (Pitting Resistance) 18
39
Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
160
Resilience: Unit (Modulus of Resilience), kJ/m3 180
720
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
28
Strength to Weight: Bending, points 19
24
Thermal Diffusivity, mm2/s 6.8
4.3
Thermal Shock Resistance, points 19
22

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 17.5 to 18.5
24 to 26
Copper (Cu), % 0
0.2 to 0.8
Iron (Fe), % 77.8 to 82.1
59.6 to 67.6
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
5.5 to 7.5
Niobium (Nb), % 0.3 to 1.0
0
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.1 to 0.6
0
Tungsten (W), % 0
0.1 to 0.5