MakeItFrom.com
Menu (ESC)

EN 1.4510 Stainless Steel vs. S20431 Stainless Steel

Both EN 1.4510 stainless steel and S20431 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4510 stainless steel and the bottom bar is S20431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 26
46
Fatigue Strength, MPa 190
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 330
500
Tensile Strength: Ultimate (UTS), MPa 510
710
Tensile Strength: Yield (Proof), MPa 270
350

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 500
410
Maximum Temperature: Mechanical, °C 870
890
Melting Completion (Liquidus), °C 1440
1400
Melting Onset (Solidus), °C 1400
1360
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
15
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.2
2.5
Embodied Energy, MJ/kg 32
36
Embodied Water, L/kg 120
140

Common Calculations

PREN (Pitting Resistance) 17
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
270
Resilience: Unit (Modulus of Resilience), kJ/m3 180
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
25
Strength to Weight: Bending, points 18
23
Thermal Diffusivity, mm2/s 6.7
4.0
Thermal Shock Resistance, points 17
15

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.12
Chromium (Cr), % 16 to 18
17 to 18
Copper (Cu), % 0
1.5 to 3.5
Iron (Fe), % 79.1 to 83.9
66.1 to 74.4
Manganese (Mn), % 0 to 1.0
5.0 to 7.0
Nickel (Ni), % 0
2.0 to 4.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.15 to 0.8
0