MakeItFrom.com
Menu (ESC)

EN 1.4510 Stainless Steel vs. S32760 Stainless Steel

Both EN 1.4510 stainless steel and S32760 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 80% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4510 stainless steel and the bottom bar is S32760 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 26
28
Fatigue Strength, MPa 190
450
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
80
Shear Strength, MPa 330
550
Tensile Strength: Ultimate (UTS), MPa 510
850
Tensile Strength: Yield (Proof), MPa 270
620

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 500
450
Maximum Temperature: Mechanical, °C 870
1100
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
15
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
22
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.2
4.1
Embodied Energy, MJ/kg 32
57
Embodied Water, L/kg 120
180

Common Calculations

PREN (Pitting Resistance) 17
42
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
220
Resilience: Unit (Modulus of Resilience), kJ/m3 180
930
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
30
Strength to Weight: Bending, points 18
25
Thermal Diffusivity, mm2/s 6.7
4.0
Thermal Shock Resistance, points 17
23

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.030
Chromium (Cr), % 16 to 18
24 to 26
Copper (Cu), % 0
0.5 to 1.0
Iron (Fe), % 79.1 to 83.9
57.6 to 65.8
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0.15 to 0.8
0
Tungsten (W), % 0
0.5 to 1.0