MakeItFrom.com
Menu (ESC)

EN 1.4512 Stainless Steel vs. AISI 321H Stainless Steel

Both EN 1.4512 stainless steel and AISI 321H stainless steel are iron alloys. Both are furnished in the annealed condition. They have 82% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4512 stainless steel and the bottom bar is AISI 321H stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 28
40
Fatigue Strength, MPa 180
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 310
400
Tensile Strength: Ultimate (UTS), MPa 470
580
Tensile Strength: Yield (Proof), MPa 240
230

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 440
480
Maximum Temperature: Mechanical, °C 720
940
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
15
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
16
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.0
3.2
Embodied Energy, MJ/kg 27
46
Embodied Water, L/kg 95
140

Common Calculations

PREN (Pitting Resistance) 12
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
190
Resilience: Unit (Modulus of Resilience), kJ/m3 150
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
21
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 6.7
4.0
Thermal Shock Resistance, points 17
12

Alloy Composition

Carbon (C), % 0 to 0.030
0.040 to 0.1
Chromium (Cr), % 10.5 to 12.5
17 to 19
Iron (Fe), % 84.8 to 89.5
65.4 to 74
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 0
9.0 to 12
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.65
0 to 0.7