MakeItFrom.com
Menu (ESC)

EN 1.4512 Stainless Steel vs. B535.0 Aluminum

EN 1.4512 stainless steel belongs to the iron alloys classification, while B535.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4512 stainless steel and the bottom bar is B535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
66
Elongation at Break, % 28
10
Fatigue Strength, MPa 180
62
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
25
Shear Strength, MPa 310
210
Tensile Strength: Ultimate (UTS), MPa 470
260
Tensile Strength: Yield (Proof), MPa 240
130

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 720
170
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1400
550
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 25
96
Thermal Expansion, µm/m-K 11
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
24
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
82

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 2.0
9.4
Embodied Energy, MJ/kg 27
160
Embodied Water, L/kg 95
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
22
Resilience: Unit (Modulus of Resilience), kJ/m3 150
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 17
28
Strength to Weight: Bending, points 17
35
Thermal Diffusivity, mm2/s 6.7
40
Thermal Shock Resistance, points 17
11

Alloy Composition

Aluminum (Al), % 0
91.7 to 93.4
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 10.5 to 12.5
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 84.8 to 89.5
0 to 0.15
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 0 to 1.0
0 to 0.050
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.65
0.1 to 0.25
Residuals, % 0
0 to 0.15