MakeItFrom.com
Menu (ESC)

EN 1.4512 Stainless Steel vs. C443.0 Aluminum

EN 1.4512 stainless steel belongs to the iron alloys classification, while C443.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4512 stainless steel and the bottom bar is C443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 28
9.0
Fatigue Strength, MPa 180
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Shear Strength, MPa 310
130
Tensile Strength: Ultimate (UTS), MPa 470
230
Tensile Strength: Yield (Proof), MPa 240
100

Thermal Properties

Latent Heat of Fusion, J/g 270
470
Maximum Temperature: Mechanical, °C 720
170
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1400
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 25
140
Thermal Expansion, µm/m-K 11
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
37
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
120

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.0
7.9
Embodied Energy, MJ/kg 27
150
Embodied Water, L/kg 95
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
17
Resilience: Unit (Modulus of Resilience), kJ/m3 150
70
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 17
24
Strength to Weight: Bending, points 17
31
Thermal Diffusivity, mm2/s 6.7
58
Thermal Shock Resistance, points 17
10

Alloy Composition

Aluminum (Al), % 0
89.6 to 95.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 10.5 to 12.5
0
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 84.8 to 89.5
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
4.5 to 6.0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.65
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25