MakeItFrom.com
Menu (ESC)

EN 1.4512 Stainless Steel vs. EN 1.5638 Steel

Both EN 1.4512 stainless steel and EN 1.5638 steel are iron alloys. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4512 stainless steel and the bottom bar is EN 1.5638 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 28
23
Fatigue Strength, MPa 180
290
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 470
580
Tensile Strength: Yield (Proof), MPa 240
410

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 720
410
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
52
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
4.0
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.0
1.7
Embodied Energy, MJ/kg 27
23
Embodied Water, L/kg 95
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 150
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
20
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 6.7
14
Thermal Shock Resistance, points 17
17

Alloy Composition

Carbon (C), % 0 to 0.030
0.060 to 0.12
Chromium (Cr), % 10.5 to 12.5
0
Iron (Fe), % 84.8 to 89.5
94.4 to 96.4
Manganese (Mn), % 0 to 1.0
0.5 to 0.8
Nickel (Ni), % 0
3.0 to 4.0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0 to 0.65
0