MakeItFrom.com
Menu (ESC)

EN 1.4512 Stainless Steel vs. C85900 Brass

EN 1.4512 stainless steel belongs to the iron alloys classification, while C85900 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4512 stainless steel and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 28
30
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 470
460
Tensile Strength: Yield (Proof), MPa 240
190

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 720
130
Melting Completion (Liquidus), °C 1450
830
Melting Onset (Solidus), °C 1400
790
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 25
89
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
25
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
28

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
24
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.0
2.9
Embodied Energy, MJ/kg 27
49
Embodied Water, L/kg 95
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
170
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 17
16
Strength to Weight: Bending, points 17
17
Thermal Diffusivity, mm2/s 6.7
29
Thermal Shock Resistance, points 17
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 10.5 to 12.5
0
Copper (Cu), % 0
58 to 62
Iron (Fe), % 84.8 to 89.5
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0 to 0.010
Nickel (Ni), % 0
0 to 1.5
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.015
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Titanium (Ti), % 0 to 0.65
0
Zinc (Zn), % 0
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7