MakeItFrom.com
Menu (ESC)

EN 1.4516 Stainless Steel vs. C95400 Bronze

EN 1.4516 stainless steel belongs to the iron alloys classification, while C95400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4516 stainless steel and the bottom bar is C95400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 23
8.1 to 16
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Tensile Strength: Ultimate (UTS), MPa 550
600 to 710
Tensile Strength: Yield (Proof), MPa 320
240 to 360

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Maximum Temperature: Mechanical, °C 720
230
Melting Completion (Liquidus), °C 1450
1040
Melting Onset (Solidus), °C 1400
1030
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 30
59
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
13
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
14

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
27
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.0
3.2
Embodied Energy, MJ/kg 28
53
Embodied Water, L/kg 97
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
48 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 260
250 to 560
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 20
20 to 24
Strength to Weight: Bending, points 19
19 to 22
Thermal Diffusivity, mm2/s 8.1
16
Thermal Shock Resistance, points 20
21 to 25

Alloy Composition

Aluminum (Al), % 0
10 to 11.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 10.5 to 12.5
0
Copper (Cu), % 0
83 to 87
Iron (Fe), % 83.3 to 89
3.0 to 5.0
Manganese (Mn), % 0 to 1.5
0 to 0.5
Nickel (Ni), % 0.5 to 1.5
0 to 1.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.050 to 0.35
0
Residuals, % 0
0 to 0.5