MakeItFrom.com
Menu (ESC)

EN 1.4517 Stainless Steel vs. EN 1.8893 Steel

Both EN 1.4517 stainless steel and EN 1.8893 steel are iron alloys. They have 63% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4517 stainless steel and the bottom bar is EN 1.8893 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
16
Fatigue Strength, MPa 380
470
Impact Strength: V-Notched Charpy, J 56
38
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
73
Tensile Strength: Ultimate (UTS), MPa 730
830
Tensile Strength: Yield (Proof), MPa 550
720

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
410
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 20
2.9
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.7
Embodied Energy, MJ/kg 53
23
Embodied Water, L/kg 180
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
130
Resilience: Unit (Modulus of Resilience), kJ/m3 740
1370
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 26
29
Strength to Weight: Bending, points 23
25
Thermal Diffusivity, mm2/s 4.6
11
Thermal Shock Resistance, points 20
24

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.030
0 to 0.2
Chromium (Cr), % 24.5 to 26.5
0 to 0.3
Copper (Cu), % 2.8 to 3.5
0 to 0.2
Iron (Fe), % 56.7 to 65.1
95.6 to 98
Manganese (Mn), % 0 to 1.5
1.4 to 1.7
Molybdenum (Mo), % 2.5 to 3.5
0.3 to 0.45
Nickel (Ni), % 5.0 to 7.0
0.3 to 0.7
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.12 to 0.22
0 to 0.020
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.025
0 to 0.025
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12