MakeItFrom.com
Menu (ESC)

EN 1.4518 Stainless Steel vs. EN 1.4607 Stainless Steel

Both EN 1.4518 stainless steel and EN 1.4607 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4518 stainless steel and the bottom bar is EN 1.4607 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
21
Fatigue Strength, MPa 160
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 79
77
Tensile Strength: Ultimate (UTS), MPa 490
530
Tensile Strength: Yield (Proof), MPa 210
270

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 420
580
Maximum Temperature: Mechanical, °C 1000
930
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
18
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 20
13
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 4.0
2.8
Embodied Energy, MJ/kg 55
40
Embodied Water, L/kg 160
130

Common Calculations

PREN (Pitting Resistance) 30
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
91
Resilience: Unit (Modulus of Resilience), kJ/m3 100
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
19
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 4.1
4.9
Thermal Shock Resistance, points 14
19

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 18 to 20
18.5 to 20.5
Iron (Fe), % 61.4 to 70
75.6 to 81.4
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 3.0 to 3.5
0
Nickel (Ni), % 9.0 to 12
0
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.8