MakeItFrom.com
Menu (ESC)

EN 1.4521 Stainless Steel vs. EN 1.4376 Stainless Steel

Both EN 1.4521 stainless steel and EN 1.4376 stainless steel are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4521 stainless steel and the bottom bar is EN 1.4376 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
45
Fatigue Strength, MPa 230
420
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
77
Shear Strength, MPa 330
530
Tensile Strength: Ultimate (UTS), MPa 520
750
Tensile Strength: Yield (Proof), MPa 340
450

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 500
420
Maximum Temperature: Mechanical, °C 930
930
Melting Completion (Liquidus), °C 1460
1410
Melting Onset (Solidus), °C 1410
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 23
15
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 12
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 39
37
Embodied Water, L/kg 130
140

Common Calculations

PREN (Pitting Resistance) 26
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
290
Resilience: Unit (Modulus of Resilience), kJ/m3 280
520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
27
Strength to Weight: Bending, points 19
24
Thermal Diffusivity, mm2/s 6.2
4.0
Thermal Shock Resistance, points 18
17

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.1
Chromium (Cr), % 17 to 20
17 to 20.5
Iron (Fe), % 74.6 to 81.1
65.5 to 76
Manganese (Mn), % 0 to 1.0
5.0 to 8.0
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 0
2.0 to 4.5
Nitrogen (N), % 0 to 0.030
0 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0.15 to 0.8
0