MakeItFrom.com
Menu (ESC)

EN 1.4523 Stainless Steel vs. EN 2.4851 Nickel

EN 1.4523 stainless steel belongs to the iron alloys classification, while EN 2.4851 nickel belongs to the nickel alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4523 stainless steel and the bottom bar is EN 2.4851 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 17
34
Fatigue Strength, MPa 190
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 320
430
Tensile Strength: Ultimate (UTS), MPa 520
650
Tensile Strength: Yield (Proof), MPa 320
230

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Maximum Temperature: Mechanical, °C 920
1200
Melting Completion (Liquidus), °C 1450
1360
Melting Onset (Solidus), °C 1410
1310
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 22
11
Thermal Expansion, µm/m-K 10
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
49
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.9
8.1
Embodied Energy, MJ/kg 40
120
Embodied Water, L/kg 130
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77
170
Resilience: Unit (Modulus of Resilience), kJ/m3 260
130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 18
22
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 5.8
2.9
Thermal Shock Resistance, points 18
17

Alloy Composition

Aluminum (Al), % 0 to 0.040
1.0 to 1.7
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0 to 0.030
0.030 to 0.1
Chromium (Cr), % 17.5 to 19
21 to 25
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 75.7 to 80.2
7.7 to 18
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 0
58 to 63
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0.15 to 0.35
0 to 0.015
Titanium (Ti), % 0.15 to 0.8
0 to 0.5