MakeItFrom.com
Menu (ESC)

EN 1.4525 Stainless Steel vs. 240.0 Aluminum

EN 1.4525 stainless steel belongs to the iron alloys classification, while 240.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4525 stainless steel and the bottom bar is 240.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 5.6 to 13
1.0
Fatigue Strength, MPa 480 to 540
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 1030 to 1250
240
Tensile Strength: Yield (Proof), MPa 840 to 1120
200

Thermal Properties

Latent Heat of Fusion, J/g 280
380
Maximum Temperature: Mechanical, °C 860
180
Melting Completion (Liquidus), °C 1430
600
Melting Onset (Solidus), °C 1390
520
Specific Heat Capacity, J/kg-K 480
860
Thermal Conductivity, W/m-K 18
96
Thermal Expansion, µm/m-K 11
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
23
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
65

Otherwise Unclassified Properties

Base Metal Price, % relative 13
12
Density, g/cm3 7.8
3.2
Embodied Carbon, kg CO2/kg material 2.8
8.7
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 130
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 130
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 1820 to 3230
280
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
43
Strength to Weight: Axial, points 36 to 45
20
Strength to Weight: Bending, points 29 to 33
26
Thermal Diffusivity, mm2/s 4.7
35
Thermal Shock Resistance, points 34 to 41
11

Alloy Composition

Aluminum (Al), % 0
81.7 to 86.9
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 2.5 to 4.0
7.0 to 9.0
Iron (Fe), % 70.4 to 79
0 to 0.5
Magnesium (Mg), % 0
5.5 to 6.5
Manganese (Mn), % 0 to 1.0
0.3 to 0.7
Molybdenum (Mo), % 0 to 0.8
0
Nickel (Ni), % 3.5 to 5.5
0.3 to 0.7
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
0 to 0.5
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15