MakeItFrom.com
Menu (ESC)

EN 1.4525 Stainless Steel vs. 6110A Aluminum

EN 1.4525 stainless steel belongs to the iron alloys classification, while 6110A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4525 stainless steel and the bottom bar is 6110A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 5.6 to 13
11 to 18
Fatigue Strength, MPa 480 to 540
140 to 210
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 1030 to 1250
360 to 470
Tensile Strength: Yield (Proof), MPa 840 to 1120
250 to 430

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 860
190
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1390
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 18
160
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
42
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 2.8
8.4
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 130
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 130
47 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 1820 to 3230
450 to 1300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 36 to 45
36 to 47
Strength to Weight: Bending, points 29 to 33
41 to 48
Thermal Diffusivity, mm2/s 4.7
65
Thermal Shock Resistance, points 34 to 41
16 to 21

Alloy Composition

Aluminum (Al), % 0
94.8 to 98
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0.050 to 0.25
Copper (Cu), % 2.5 to 4.0
0.3 to 0.8
Iron (Fe), % 70.4 to 79
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.1
Manganese (Mn), % 0 to 1.0
0.3 to 0.9
Molybdenum (Mo), % 0 to 0.8
0
Nickel (Ni), % 3.5 to 5.5
0
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
0.7 to 1.1
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15

Comparable Variants