MakeItFrom.com
Menu (ESC)

EN 1.4525 Stainless Steel vs. 852.0 Aluminum

EN 1.4525 stainless steel belongs to the iron alloys classification, while 852.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4525 stainless steel and the bottom bar is 852.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 5.6 to 13
3.4
Fatigue Strength, MPa 480 to 540
73
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 1030 to 1250
200
Tensile Strength: Yield (Proof), MPa 840 to 1120
150

Thermal Properties

Latent Heat of Fusion, J/g 280
370
Maximum Temperature: Mechanical, °C 860
190
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1390
210
Specific Heat Capacity, J/kg-K 480
840
Thermal Conductivity, W/m-K 18
180
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
130

Otherwise Unclassified Properties

Base Metal Price, % relative 13
15
Density, g/cm3 7.8
3.2
Embodied Carbon, kg CO2/kg material 2.8
8.5
Embodied Energy, MJ/kg 39
160
Embodied Water, L/kg 130
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 130
6.2
Resilience: Unit (Modulus of Resilience), kJ/m3 1820 to 3230
160
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
43
Strength to Weight: Axial, points 36 to 45
17
Strength to Weight: Bending, points 29 to 33
24
Thermal Diffusivity, mm2/s 4.7
65
Thermal Shock Resistance, points 34 to 41
8.7

Alloy Composition

Aluminum (Al), % 0
86.6 to 91.3
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 2.5 to 4.0
1.7 to 2.3
Iron (Fe), % 70.4 to 79
0 to 0.7
Magnesium (Mg), % 0
0.6 to 0.9
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 0 to 0.8
0
Nickel (Ni), % 3.5 to 5.5
0.9 to 1.5
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
0 to 0.4
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
5.5 to 7.0
Titanium (Ti), % 0
0 to 0.2
Residuals, % 0
0 to 0.3