MakeItFrom.com
Menu (ESC)

EN 1.4525 Stainless Steel vs. EN 1.7380 Steel

Both EN 1.4525 stainless steel and EN 1.7380 steel are iron alloys. They have 78% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4525 stainless steel and the bottom bar is EN 1.7380 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 5.6 to 13
19 to 20
Fatigue Strength, MPa 480 to 540
200 to 230
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
74
Tensile Strength: Ultimate (UTS), MPa 1030 to 1250
540 to 550
Tensile Strength: Yield (Proof), MPa 840 to 1120
290 to 330

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 860
460
Melting Completion (Liquidus), °C 1430
1470
Melting Onset (Solidus), °C 1390
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 18
39
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 13
3.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.8
Embodied Energy, MJ/kg 39
23
Embodied Water, L/kg 130
59

Common Calculations

PREN (Pitting Resistance) 18
5.6
Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 130
87 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 1820 to 3230
230 to 280
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 36 to 45
19 to 20
Strength to Weight: Bending, points 29 to 33
19
Thermal Diffusivity, mm2/s 4.7
11
Thermal Shock Resistance, points 34 to 41
15 to 16

Alloy Composition

Carbon (C), % 0 to 0.070
0.080 to 0.14
Chromium (Cr), % 15 to 17
2.0 to 2.5
Copper (Cu), % 2.5 to 4.0
0 to 0.3
Iron (Fe), % 70.4 to 79
94.6 to 96.6
Manganese (Mn), % 0 to 1.0
0.4 to 0.8
Molybdenum (Mo), % 0 to 0.8
0.9 to 1.1
Nickel (Ni), % 3.5 to 5.5
0
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0 to 0.012
Phosphorus (P), % 0 to 0.035
0 to 0.020
Silicon (Si), % 0 to 0.8
0 to 0.5
Sulfur (S), % 0 to 0.025
0 to 0.010