MakeItFrom.com
Menu (ESC)

EN 1.4525 Stainless Steel vs. EN AC-43200 Aluminum

EN 1.4525 stainless steel belongs to the iron alloys classification, while EN AC-43200 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4525 stainless steel and the bottom bar is EN AC-43200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 5.6 to 13
1.1
Fatigue Strength, MPa 480 to 540
67
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 1030 to 1250
190 to 260
Tensile Strength: Yield (Proof), MPa 840 to 1120
97 to 220

Thermal Properties

Latent Heat of Fusion, J/g 280
540
Maximum Temperature: Mechanical, °C 860
170
Melting Completion (Liquidus), °C 1430
600
Melting Onset (Solidus), °C 1390
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 18
140
Thermal Expansion, µm/m-K 11
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 2.8
7.8
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 130
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 130
1.8 to 2.7
Resilience: Unit (Modulus of Resilience), kJ/m3 1820 to 3230
66 to 330
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 36 to 45
20 to 28
Strength to Weight: Bending, points 29 to 33
28 to 35
Thermal Diffusivity, mm2/s 4.7
59
Thermal Shock Resistance, points 34 to 41
8.8 to 12

Alloy Composition

Aluminum (Al), % 0
86.1 to 90.8
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 2.5 to 4.0
0 to 0.35
Iron (Fe), % 70.4 to 79
0 to 0.65
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.55
Molybdenum (Mo), % 0 to 0.8
0
Nickel (Ni), % 3.5 to 5.5
0 to 0.15
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
9.0 to 11
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15

Comparable Variants