MakeItFrom.com
Menu (ESC)

EN 1.4525 Stainless Steel vs. CC334G Bronze

EN 1.4525 stainless steel belongs to the iron alloys classification, while CC334G bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4525 stainless steel and the bottom bar is CC334G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 5.6 to 13
5.6
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
45
Tensile Strength: Ultimate (UTS), MPa 1030 to 1250
810
Tensile Strength: Yield (Proof), MPa 840 to 1120
410

Thermal Properties

Latent Heat of Fusion, J/g 280
240
Maximum Temperature: Mechanical, °C 860
240
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1390
1020
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 18
41
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 13
29
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.8
3.6
Embodied Energy, MJ/kg 39
59
Embodied Water, L/kg 130
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 130
38
Resilience: Unit (Modulus of Resilience), kJ/m3 1820 to 3230
710
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 36 to 45
28
Strength to Weight: Bending, points 29 to 33
24
Thermal Diffusivity, mm2/s 4.7
11
Thermal Shock Resistance, points 34 to 41
28

Alloy Composition

Aluminum (Al), % 0
10 to 12
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 2.5 to 4.0
72 to 84.5
Iron (Fe), % 70.4 to 79
3.0 to 7.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 2.5
Molybdenum (Mo), % 0 to 0.8
0
Nickel (Ni), % 3.5 to 5.5
4.0 to 7.5
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5