MakeItFrom.com
Menu (ESC)

EN 1.4525 Stainless Steel vs. Grade Ti-Pd18 Titanium

EN 1.4525 stainless steel belongs to the iron alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4525 stainless steel and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 5.6 to 13
17
Fatigue Strength, MPa 480 to 540
350
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 1030 to 1250
710
Tensile Strength: Yield (Proof), MPa 840 to 1120
540

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 860
330
Melting Completion (Liquidus), °C 1430
1640
Melting Onset (Solidus), °C 1390
1590
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 18
8.2
Thermal Expansion, µm/m-K 11
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.8
41
Embodied Energy, MJ/kg 39
670
Embodied Water, L/kg 130
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1820 to 3230
1380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 36 to 45
44
Strength to Weight: Bending, points 29 to 33
39
Thermal Diffusivity, mm2/s 4.7
3.3
Thermal Shock Resistance, points 34 to 41
52

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.070
0 to 0.1
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 2.5 to 4.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 70.4 to 79
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.8
0
Nickel (Ni), % 3.5 to 5.5
0 to 0.050
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4