MakeItFrom.com
Menu (ESC)

EN 1.4525 Stainless Steel vs. C87800 Brass

EN 1.4525 stainless steel belongs to the iron alloys classification, while C87800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4525 stainless steel and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 5.6 to 13
25
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 1030 to 1250
590
Tensile Strength: Yield (Proof), MPa 840 to 1120
350

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 860
170
Melting Completion (Liquidus), °C 1430
920
Melting Onset (Solidus), °C 1390
820
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 18
28
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
27
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 39
44
Embodied Water, L/kg 130
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 130
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1820 to 3230
540
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 36 to 45
20
Strength to Weight: Bending, points 29 to 33
19
Thermal Diffusivity, mm2/s 4.7
8.3
Thermal Shock Resistance, points 34 to 41
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 2.5 to 4.0
80 to 84.2
Iron (Fe), % 70.4 to 79
0 to 0.15
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 0 to 0.8
0
Nickel (Ni), % 3.5 to 5.5
0 to 0.2
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0 to 0.010
Silicon (Si), % 0 to 0.8
3.8 to 4.2
Sulfur (S), % 0 to 0.025
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.5