MakeItFrom.com
Menu (ESC)

EN 1.4525 Stainless Steel vs. R30556 Alloy

Both EN 1.4525 stainless steel and R30556 alloy are iron alloys. They have 51% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4525 stainless steel and the bottom bar is R30556 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 5.6 to 13
45
Fatigue Strength, MPa 480 to 540
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
81
Tensile Strength: Ultimate (UTS), MPa 1030 to 1250
780
Tensile Strength: Yield (Proof), MPa 840 to 1120
350

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 430
450
Maximum Temperature: Mechanical, °C 860
1100
Melting Completion (Liquidus), °C 1430
1420
Melting Onset (Solidus), °C 1390
1330
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 18
11
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 13
70
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 2.8
8.7
Embodied Energy, MJ/kg 39
130
Embodied Water, L/kg 130
300

Common Calculations

PREN (Pitting Resistance) 18
40
Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 130
290
Resilience: Unit (Modulus of Resilience), kJ/m3 1820 to 3230
290
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 36 to 45
26
Strength to Weight: Bending, points 29 to 33
22
Thermal Diffusivity, mm2/s 4.7
2.9
Thermal Shock Resistance, points 34 to 41
18

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.5
Boron (B), % 0
0 to 0.020
Carbon (C), % 0 to 0.070
0.050 to 0.15
Chromium (Cr), % 15 to 17
21 to 23
Cobalt (Co), % 0
16 to 21
Copper (Cu), % 2.5 to 4.0
0
Iron (Fe), % 70.4 to 79
20.4 to 38.2
Lanthanum (La), % 0
0.0050 to 0.1
Manganese (Mn), % 0 to 1.0
0.5 to 2.0
Molybdenum (Mo), % 0 to 0.8
2.5 to 4.0
Nickel (Ni), % 3.5 to 5.5
19 to 22.5
Niobium (Nb), % 0 to 0.35
0 to 0.3
Nitrogen (N), % 0 to 0.050
0.1 to 0.3
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.8
0.2 to 0.8
Sulfur (S), % 0 to 0.025
0 to 0.015
Tantalum (Ta), % 0
0.3 to 1.3
Tungsten (W), % 0
2.0 to 3.5
Zinc (Zn), % 0
0.0010 to 0.1