MakeItFrom.com
Menu (ESC)

EN 1.4527 Stainless Steel vs. 2618 Aluminum

EN 1.4527 stainless steel belongs to the iron alloys classification, while 2618 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4527 stainless steel and the bottom bar is 2618 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
120
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 40
5.8
Fatigue Strength, MPa 170
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 480
420
Tensile Strength: Yield (Proof), MPa 190
350

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1410
640
Melting Onset (Solidus), °C 1360
550
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 15
160
Thermal Expansion, µm/m-K 15
22

Otherwise Unclassified Properties

Base Metal Price, % relative 32
11
Density, g/cm3 8.1
2.9
Embodied Carbon, kg CO2/kg material 5.6
8.3
Embodied Energy, MJ/kg 78
150
Embodied Water, L/kg 210
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
23
Resilience: Unit (Modulus of Resilience), kJ/m3 95
850
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 17
40
Strength to Weight: Bending, points 17
42
Thermal Diffusivity, mm2/s 4.0
62
Thermal Shock Resistance, points 12
19

Alloy Composition

Aluminum (Al), % 0
92.4 to 94.9
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 3.0 to 4.0
1.9 to 2.7
Iron (Fe), % 37.4 to 48.5
0.9 to 1.3
Magnesium (Mg), % 0
1.3 to 1.8
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 27.5 to 30.5
0.9 to 1.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0.1 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.040 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15