MakeItFrom.com
Menu (ESC)

EN 1.4527 Stainless Steel vs. 8011A Aluminum

EN 1.4527 stainless steel belongs to the iron alloys classification, while 8011A aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4527 stainless steel and the bottom bar is 8011A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
25 to 50
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 40
1.7 to 28
Fatigue Strength, MPa 170
33 to 76
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 480
100 to 180
Tensile Strength: Yield (Proof), MPa 190
34 to 170

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
650
Melting Onset (Solidus), °C 1360
630
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 15
210
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 32
9.0
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 5.6
8.2
Embodied Energy, MJ/kg 78
150
Embodied Water, L/kg 210
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
3.0 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 95
8.2 to 200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 17
11 to 18
Strength to Weight: Bending, points 17
18 to 26
Thermal Diffusivity, mm2/s 4.0
86
Thermal Shock Resistance, points 12
4.6 to 8.1

Alloy Composition

Aluminum (Al), % 0
97.5 to 99.1
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 19 to 22
0 to 0.1
Copper (Cu), % 3.0 to 4.0
0 to 0.1
Iron (Fe), % 37.4 to 48.5
0.5 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0 to 0.1
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 27.5 to 30.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0.4 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15