MakeItFrom.com
Menu (ESC)

EN 1.4527 Stainless Steel vs. Grade 28 Titanium

EN 1.4527 stainless steel belongs to the iron alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4527 stainless steel and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 40
11 to 17
Fatigue Strength, MPa 170
330 to 480
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 480
690 to 980
Tensile Strength: Yield (Proof), MPa 190
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1100
330
Melting Completion (Liquidus), °C 1410
1640
Melting Onset (Solidus), °C 1360
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 15
8.3
Thermal Expansion, µm/m-K 15
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 32
36
Density, g/cm3 8.1
4.5
Embodied Carbon, kg CO2/kg material 5.6
37
Embodied Energy, MJ/kg 78
600
Embodied Water, L/kg 210
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 95
1370 to 3100
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 17
43 to 61
Strength to Weight: Bending, points 17
39 to 49
Thermal Diffusivity, mm2/s 4.0
3.4
Thermal Shock Resistance, points 12
47 to 66

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.060
0 to 0.080
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 3.0 to 4.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 37.4 to 48.5
0 to 0.25
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 27.5 to 30.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
92.4 to 95.4
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4