MakeItFrom.com
Menu (ESC)

EN 1.4529 Stainless Steel vs. 712.0 Aluminum

EN 1.4529 stainless steel belongs to the iron alloys classification, while 712.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4529 stainless steel and the bottom bar is 712.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
75 to 90
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 43
4.5 to 4.7
Fatigue Strength, MPa 310
140 to 180
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 80
27
Shear Strength, MPa 520
180
Tensile Strength: Ultimate (UTS), MPa 750
250 to 260
Tensile Strength: Yield (Proof), MPa 340
180 to 200

Thermal Properties

Latent Heat of Fusion, J/g 300
380
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1410
610
Specific Heat Capacity, J/kg-K 460
870
Thermal Conductivity, W/m-K 12
160
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
40
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
120

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 8.1
3.0
Embodied Carbon, kg CO2/kg material 6.2
8.0
Embodied Energy, MJ/kg 84
150
Embodied Water, L/kg 200
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
11
Resilience: Unit (Modulus of Resilience), kJ/m3 280
240 to 270
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 26
24 to 25
Strength to Weight: Bending, points 23
30 to 31
Thermal Diffusivity, mm2/s 3.2
62
Thermal Shock Resistance, points 17
11

Alloy Composition

Aluminum (Al), % 0
90.7 to 94
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 19 to 21
0.4 to 0.6
Copper (Cu), % 0.5 to 1.5
0 to 0.25
Iron (Fe), % 42.7 to 50.4
0 to 0.5
Magnesium (Mg), % 0
0.5 to 0.65
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 6.0 to 7.0
0
Nickel (Ni), % 24 to 26
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0.15 to 0.25
Zinc (Zn), % 0
5.0 to 6.5
Residuals, % 0
0 to 0.2