MakeItFrom.com
Menu (ESC)

EN 1.4537 Stainless Steel vs. SAE-AISI 8620 Steel

Both EN 1.4537 stainless steel and SAE-AISI 8620 steel are iron alloys. They have 44% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4537 stainless steel and the bottom bar is SAE-AISI 8620 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
150 to 210
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 42
13 to 31
Fatigue Strength, MPa 290
270 to 360
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 80
73
Shear Strength, MPa 480
340 to 420
Tensile Strength: Ultimate (UTS), MPa 700
520 to 690
Tensile Strength: Yield (Proof), MPa 330
360 to 570

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
410
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 14
39
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
2.6
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.1
1.5
Embodied Energy, MJ/kg 84
20
Embodied Water, L/kg 220
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
86 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 270
340 to 880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
18 to 24
Strength to Weight: Bending, points 22
18 to 22
Thermal Diffusivity, mm2/s 3.7
10
Thermal Shock Resistance, points 15
15 to 20

Alloy Composition

Carbon (C), % 0 to 0.020
0.18 to 0.23
Chromium (Cr), % 24 to 26
0.4 to 0.6
Copper (Cu), % 1.0 to 2.0
0
Iron (Fe), % 36.3 to 46.1
96.9 to 98
Manganese (Mn), % 0 to 2.0
0.7 to 0.9
Molybdenum (Mo), % 4.7 to 5.7
0.15 to 0.25
Nickel (Ni), % 24 to 27
0.4 to 0.7
Nitrogen (N), % 0.17 to 0.25
0
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 0.7
0.15 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.040