MakeItFrom.com
Menu (ESC)

EN 1.4539 Stainless Steel vs. 5754 Aluminum

EN 1.4539 stainless steel belongs to the iron alloys classification, while 5754 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4539 stainless steel and the bottom bar is 5754 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
52 to 88
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 38
2.0 to 19
Fatigue Strength, MPa 220
66 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 430
120 to 190
Tensile Strength: Ultimate (UTS), MPa 630
200 to 330
Tensile Strength: Yield (Proof), MPa 260
80 to 280

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1390
600
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
110

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 5.7
8.7
Embodied Energy, MJ/kg 78
150
Embodied Water, L/kg 200
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
6.1 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 160
47 to 580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 22
21 to 34
Strength to Weight: Bending, points 20
28 to 39
Thermal Diffusivity, mm2/s 3.2
54
Thermal Shock Resistance, points 14
8.9 to 14

Alloy Composition

Aluminum (Al), % 0
94.2 to 97.4
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 19 to 21
0 to 0.3
Copper (Cu), % 1.2 to 2.0
0 to 0.1
Iron (Fe), % 43.1 to 51.8
0 to 0.4
Magnesium (Mg), % 0
2.6 to 3.6
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 24 to 26
0
Nitrogen (N), % 0 to 0.15
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.7
0 to 0.4
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15