MakeItFrom.com
Menu (ESC)

EN 1.4539 Stainless Steel vs. C443.0 Aluminum

EN 1.4539 stainless steel belongs to the iron alloys classification, while C443.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4539 stainless steel and the bottom bar is C443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
65
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 38
9.0
Fatigue Strength, MPa 220
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
27
Shear Strength, MPa 430
130
Tensile Strength: Ultimate (UTS), MPa 630
230
Tensile Strength: Yield (Proof), MPa 260
100

Thermal Properties

Latent Heat of Fusion, J/g 300
470
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1390
600
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 12
140
Thermal Expansion, µm/m-K 16
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
37
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
120

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 5.7
7.9
Embodied Energy, MJ/kg 78
150
Embodied Water, L/kg 200
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
17
Resilience: Unit (Modulus of Resilience), kJ/m3 160
70
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 22
24
Strength to Weight: Bending, points 20
31
Thermal Diffusivity, mm2/s 3.2
58
Thermal Shock Resistance, points 14
10

Alloy Composition

Aluminum (Al), % 0
89.6 to 95.5
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 1.2 to 2.0
0 to 0.6
Iron (Fe), % 43.1 to 51.8
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0 to 0.35
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 24 to 26
0 to 0.5
Nitrogen (N), % 0 to 0.15
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.7
4.5 to 6.0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25