MakeItFrom.com
Menu (ESC)

EN 1.4539 Stainless Steel vs. S15500 Stainless Steel

Both EN 1.4539 stainless steel and S15500 stainless steel are iron alloys. They have 69% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4539 stainless steel and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
290 to 430
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 38
6.8 to 16
Fatigue Strength, MPa 220
350 to 650
Impact Strength: V-Notched Charpy, J 90
7.8 to 53
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 79
75
Shear Strength, MPa 430
540 to 870
Tensile Strength: Ultimate (UTS), MPa 630
890 to 1490
Tensile Strength: Yield (Proof), MPa 260
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 420
440
Maximum Temperature: Mechanical, °C 1100
820
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1390
1380
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 12
17
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 5.7
2.7
Embodied Energy, MJ/kg 78
39
Embodied Water, L/kg 200
130

Common Calculations

PREN (Pitting Resistance) 36
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 160
890 to 4460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
32 to 53
Strength to Weight: Bending, points 20
26 to 37
Thermal Diffusivity, mm2/s 3.2
4.6
Thermal Shock Resistance, points 14
30 to 50

Alloy Composition

Carbon (C), % 0 to 0.020
0 to 0.070
Chromium (Cr), % 19 to 21
14 to 15.5
Copper (Cu), % 1.2 to 2.0
2.5 to 4.5
Iron (Fe), % 43.1 to 51.8
71.9 to 79.9
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 24 to 26
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Nitrogen (N), % 0 to 0.15
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.7
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030