MakeItFrom.com
Menu (ESC)

EN 1.4541 Stainless Steel vs. Grade 27 Titanium

EN 1.4541 stainless steel belongs to the iron alloys classification, while grade 27 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4541 stainless steel and the bottom bar is grade 27 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 40
27
Fatigue Strength, MPa 190 to 330
170
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
41
Shear Strength, MPa 410 to 550
180
Tensile Strength: Ultimate (UTS), MPa 600 to 900
270
Tensile Strength: Yield (Proof), MPa 220 to 570
230

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 940
320
Melting Completion (Liquidus), °C 1430
1660
Melting Onset (Solidus), °C 1380
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 16
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 16
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.2
33
Embodied Energy, MJ/kg 46
530
Embodied Water, L/kg 140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
70
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 830
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 21 to 32
17
Strength to Weight: Bending, points 20 to 27
21
Thermal Diffusivity, mm2/s 4.0
8.8
Thermal Shock Resistance, points 14 to 20
21

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 17 to 19
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 65.2 to 74
0 to 0.2
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 9.0 to 12
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Phosphorus (P), % 0 to 0.045
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.7
99 to 99.92
Residuals, % 0
0 to 0.4