EN 1.4541 Stainless Steel vs. SAE-AISI 1151 Steel
Both EN 1.4541 stainless steel and SAE-AISI 1151 steel are iron alloys. They have 71% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is EN 1.4541 stainless steel and the bottom bar is SAE-AISI 1151 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 190 to 270 | |
210 to 220 |
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Elongation at Break, % | 14 to 40 | |
11 to 17 |
Fatigue Strength, MPa | 190 to 330 | |
260 to 410 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 77 | |
72 |
Shear Strength, MPa | 410 to 550 | |
430 to 480 |
Tensile Strength: Ultimate (UTS), MPa | 600 to 900 | |
710 to 800 |
Tensile Strength: Yield (Proof), MPa | 220 to 570 | |
390 to 660 |
Thermal Properties
Latent Heat of Fusion, J/g | 290 | |
250 |
Maximum Temperature: Mechanical, °C | 940 | |
400 |
Melting Completion (Liquidus), °C | 1430 | |
1460 |
Melting Onset (Solidus), °C | 1380 | |
1420 |
Specific Heat Capacity, J/kg-K | 480 | |
470 |
Thermal Conductivity, W/m-K | 15 | |
51 |
Thermal Expansion, µm/m-K | 16 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.4 | |
10 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.7 | |
12 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 16 | |
1.8 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 3.2 | |
1.4 |
Embodied Energy, MJ/kg | 46 | |
18 |
Embodied Water, L/kg | 140 | |
46 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 110 to 190 | |
86 to 100 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 120 to 830 | |
400 to 1170 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 21 to 32 | |
25 to 28 |
Strength to Weight: Bending, points | 20 to 27 | |
22 to 24 |
Thermal Diffusivity, mm2/s | 4.0 | |
14 |
Thermal Shock Resistance, points | 14 to 20 | |
22 to 25 |
Alloy Composition
Carbon (C), % | 0 to 0.080 | |
0.48 to 0.55 |
Chromium (Cr), % | 17 to 19 | |
0 |
Iron (Fe), % | 65.2 to 74 | |
98.3 to 98.7 |
Manganese (Mn), % | 0 to 2.0 | |
0.7 to 1.0 |
Nickel (Ni), % | 9.0 to 12 | |
0 |
Phosphorus (P), % | 0 to 0.045 | |
0 to 0.040 |
Silicon (Si), % | 0 to 1.0 | |
0 |
Sulfur (S), % | 0 to 0.015 | |
0.080 to 0.13 |
Titanium (Ti), % | 0 to 0.7 | |
0 |