MakeItFrom.com
Menu (ESC)

EN 1.4542 Stainless Steel vs. AWS E90C-B9

Both EN 1.4542 stainless steel and AWS E90C-B9 are iron alloys. They have 85% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4542 stainless steel and the bottom bar is AWS E90C-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 5.7 to 20
18
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
75
Tensile Strength: Ultimate (UTS), MPa 880 to 1470
710
Tensile Strength: Yield (Proof), MPa 580 to 1300
460

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
25
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 13
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 39
37
Embodied Water, L/kg 130
91

Common Calculations

PREN (Pitting Resistance) 17
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 160
110
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4360
550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 31 to 52
25
Strength to Weight: Bending, points 26 to 37
23
Thermal Diffusivity, mm2/s 4.3
6.9
Thermal Shock Resistance, points 29 to 49
20

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0 to 0.070
0.080 to 0.13
Chromium (Cr), % 15 to 17
8.0 to 10.5
Copper (Cu), % 3.0 to 5.0
0 to 0.2
Iron (Fe), % 69.6 to 79
84.4 to 90.9
Manganese (Mn), % 0 to 1.5
0 to 1.2
Molybdenum (Mo), % 0 to 0.6
0.85 to 1.2
Nickel (Ni), % 3.0 to 5.0
0 to 0.8
Niobium (Nb), % 0 to 0.45
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.7
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.015
Vanadium (V), % 0
0.15 to 0.3
Residuals, % 0
0 to 0.5