EN 1.4542 Stainless Steel vs. EN 1.0213 Steel
Both EN 1.4542 stainless steel and EN 1.0213 steel are iron alloys. They have 75% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is EN 1.4542 stainless steel and the bottom bar is EN 1.0213 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 5.7 to 20 | |
12 to 25 |
Fatigue Strength, MPa | 370 to 640 | |
160 to 240 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 76 | |
73 |
Shear Strength, MPa | 550 to 860 | |
230 to 270 |
Tensile Strength: Ultimate (UTS), MPa | 880 to 1470 | |
320 to 430 |
Tensile Strength: Yield (Proof), MPa | 580 to 1300 | |
220 to 330 |
Thermal Properties
Latent Heat of Fusion, J/g | 280 | |
250 |
Maximum Temperature: Mechanical, °C | 860 | |
400 |
Melting Completion (Liquidus), °C | 1430 | |
1470 |
Melting Onset (Solidus), °C | 1380 | |
1430 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 16 | |
53 |
Thermal Expansion, µm/m-K | 11 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.4 | |
6.9 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.8 | |
7.9 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 13 | |
1.8 |
Density, g/cm3 | 7.8 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 2.7 | |
1.4 |
Embodied Energy, MJ/kg | 39 | |
18 |
Embodied Water, L/kg | 130 | |
46 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 62 to 160 | |
33 to 98 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 880 to 4360 | |
120 to 300 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 31 to 52 | |
11 to 15 |
Strength to Weight: Bending, points | 26 to 37 | |
13 to 16 |
Thermal Diffusivity, mm2/s | 4.3 | |
14 |
Thermal Shock Resistance, points | 29 to 49 | |
10 to 14 |
Alloy Composition
Aluminum (Al), % | 0 | |
0.020 to 0.060 |
Carbon (C), % | 0 to 0.070 | |
0.060 to 0.1 |
Chromium (Cr), % | 15 to 17 | |
0 |
Copper (Cu), % | 3.0 to 5.0 | |
0 |
Iron (Fe), % | 69.6 to 79 | |
99.245 to 99.67 |
Manganese (Mn), % | 0 to 1.5 | |
0.25 to 0.45 |
Molybdenum (Mo), % | 0 to 0.6 | |
0 |
Nickel (Ni), % | 3.0 to 5.0 | |
0 |
Niobium (Nb), % | 0 to 0.45 | |
0 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.020 |
Silicon (Si), % | 0 to 0.7 | |
0 to 0.1 |
Sulfur (S), % | 0 to 0.015 | |
0 to 0.025 |