MakeItFrom.com
Menu (ESC)

EN 1.4542 Stainless Steel vs. EN 1.4878 Stainless Steel

Both EN 1.4542 stainless steel and EN 1.4878 stainless steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4542 stainless steel and the bottom bar is EN 1.4878 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 5.7 to 20
45
Fatigue Strength, MPa 370 to 640
190
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 550 to 860
430
Tensile Strength: Ultimate (UTS), MPa 880 to 1470
610
Tensile Strength: Yield (Proof), MPa 580 to 1300
210

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 440
490
Maximum Temperature: Mechanical, °C 860
850
Melting Completion (Liquidus), °C 1430
1430
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 13
16
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.2
Embodied Energy, MJ/kg 39
46
Embodied Water, L/kg 130
140

Common Calculations

PREN (Pitting Resistance) 17
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 160
210
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4360
120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 31 to 52
22
Strength to Weight: Bending, points 26 to 37
20
Thermal Diffusivity, mm2/s 4.3
4.0
Thermal Shock Resistance, points 29 to 49
13

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.1
Chromium (Cr), % 15 to 17
17 to 19
Copper (Cu), % 3.0 to 5.0
0
Iron (Fe), % 69.6 to 79
65 to 74
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0 to 0.6
0
Nickel (Ni), % 3.0 to 5.0
9.0 to 12
Niobium (Nb), % 0 to 0.45
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 0.7
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0
0 to 0.8