MakeItFrom.com
Menu (ESC)

EN 1.4542 Stainless Steel vs. EN 1.8879 Steel

Both EN 1.4542 stainless steel and EN 1.8879 steel are iron alloys. They have 78% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4542 stainless steel and the bottom bar is EN 1.8879 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 5.7 to 20
16
Fatigue Strength, MPa 370 to 640
460
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 550 to 860
510
Tensile Strength: Ultimate (UTS), MPa 880 to 1470
830
Tensile Strength: Yield (Proof), MPa 580 to 1300
710

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 860
420
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
40
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
3.7
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.9
Embodied Energy, MJ/kg 39
26
Embodied Water, L/kg 130
54

Common Calculations

PREN (Pitting Resistance) 17
2.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 160
120
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4360
1320
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 31 to 52
29
Strength to Weight: Bending, points 26 to 37
25
Thermal Diffusivity, mm2/s 4.3
11
Thermal Shock Resistance, points 29 to 49
24

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.070
0 to 0.2
Chromium (Cr), % 15 to 17
0 to 1.5
Copper (Cu), % 3.0 to 5.0
0 to 0.3
Iron (Fe), % 69.6 to 79
91.9 to 100
Manganese (Mn), % 0 to 1.5
0 to 1.7
Molybdenum (Mo), % 0 to 0.6
0 to 0.7
Nickel (Ni), % 3.0 to 5.0
0 to 2.5
Niobium (Nb), % 0 to 0.45
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.7
0 to 0.8
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zirconium (Zr), % 0
0 to 0.15