MakeItFrom.com
Menu (ESC)

EN 1.4542 Stainless Steel vs. CC330G Bronze

EN 1.4542 stainless steel belongs to the iron alloys classification, while CC330G bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4542 stainless steel and the bottom bar is CC330G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 5.7 to 20
20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 880 to 1470
530
Tensile Strength: Yield (Proof), MPa 580 to 1300
190

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 860
220
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1380
1000
Specific Heat Capacity, J/kg-K 470
430
Thermal Conductivity, W/m-K 16
62
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
14
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
15

Otherwise Unclassified Properties

Base Metal Price, % relative 13
29
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 2.7
3.2
Embodied Energy, MJ/kg 39
52
Embodied Water, L/kg 130
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 160
82
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4360
170
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 31 to 52
18
Strength to Weight: Bending, points 26 to 37
17
Thermal Diffusivity, mm2/s 4.3
17
Thermal Shock Resistance, points 29 to 49
19

Alloy Composition

Aluminum (Al), % 0
8.0 to 10.5
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
87 to 92
Iron (Fe), % 69.6 to 79
0 to 1.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.5
0 to 0.5
Molybdenum (Mo), % 0 to 0.6
0
Nickel (Ni), % 3.0 to 5.0
0 to 1.0
Niobium (Nb), % 0 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
0 to 0.5