MakeItFrom.com
Menu (ESC)

EN 1.4542 Stainless Steel vs. Grade 18 Titanium

EN 1.4542 stainless steel belongs to the iron alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4542 stainless steel and the bottom bar is grade 18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 5.7 to 20
11 to 17
Fatigue Strength, MPa 370 to 640
330 to 480
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Shear Strength, MPa 550 to 860
420 to 590
Tensile Strength: Ultimate (UTS), MPa 880 to 1470
690 to 980
Tensile Strength: Yield (Proof), MPa 580 to 1300
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 860
330
Melting Completion (Liquidus), °C 1430
1640
Melting Onset (Solidus), °C 1380
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 16
8.3
Thermal Expansion, µm/m-K 11
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.7
41
Embodied Energy, MJ/kg 39
670
Embodied Water, L/kg 130
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 160
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4360
1380 to 3110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 31 to 52
43 to 61
Strength to Weight: Bending, points 26 to 37
39 to 49
Thermal Diffusivity, mm2/s 4.3
3.4
Thermal Shock Resistance, points 29 to 49
47 to 67

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.070
0 to 0.080
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 69.6 to 79
0 to 0.25
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.6
0
Nickel (Ni), % 3.0 to 5.0
0
Niobium (Nb), % 0 to 0.45
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4