MakeItFrom.com
Menu (ESC)

EN 1.4542 Stainless Steel vs. Titanium 15-3-3-3

EN 1.4542 stainless steel belongs to the iron alloys classification, while titanium 15-3-3-3 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4542 stainless steel and the bottom bar is titanium 15-3-3-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 5.7 to 20
5.7 to 8.0
Fatigue Strength, MPa 370 to 640
610 to 710
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
39
Shear Strength, MPa 550 to 860
660 to 810
Tensile Strength: Ultimate (UTS), MPa 880 to 1470
1120 to 1390
Tensile Strength: Yield (Proof), MPa 580 to 1300
1100 to 1340

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 860
430
Melting Completion (Liquidus), °C 1430
1620
Melting Onset (Solidus), °C 1380
1560
Specific Heat Capacity, J/kg-K 470
520
Thermal Conductivity, W/m-K 16
8.1
Thermal Expansion, µm/m-K 11
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
40
Density, g/cm3 7.8
4.8
Embodied Carbon, kg CO2/kg material 2.7
59
Embodied Energy, MJ/kg 39
950
Embodied Water, L/kg 130
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 160
78 to 89
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
32
Strength to Weight: Axial, points 31 to 52
64 to 80
Strength to Weight: Bending, points 26 to 37
50 to 57
Thermal Diffusivity, mm2/s 4.3
3.2
Thermal Shock Resistance, points 29 to 49
79 to 98

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.070
0 to 0.050
Chromium (Cr), % 15 to 17
2.5 to 3.5
Copper (Cu), % 3.0 to 5.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 69.6 to 79
0 to 0.25
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.6
0
Nickel (Ni), % 3.0 to 5.0
0
Niobium (Nb), % 0 to 0.45
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
2.5 to 3.5
Titanium (Ti), % 0
72.6 to 78.5
Vanadium (V), % 0
14 to 16
Residuals, % 0
0 to 0.4