MakeItFrom.com
Menu (ESC)

EN 1.4542 Stainless Steel vs. C14510 Copper

EN 1.4542 stainless steel belongs to the iron alloys classification, while C14510 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4542 stainless steel and the bottom bar is C14510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 5.7 to 20
9.1 to 9.6
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 550 to 860
180 to 190
Tensile Strength: Ultimate (UTS), MPa 880 to 1470
300 to 320
Tensile Strength: Yield (Proof), MPa 580 to 1300
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 860
200
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1380
1050
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 16
360
Thermal Expansion, µm/m-K 11
17

Otherwise Unclassified Properties

Base Metal Price, % relative 13
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 39
42
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 160
25 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4360
230 to 280
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 31 to 52
9.2 to 10
Strength to Weight: Bending, points 26 to 37
11 to 12
Thermal Diffusivity, mm2/s 4.3
100
Thermal Shock Resistance, points 29 to 49
11 to 12

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
99.15 to 99.69
Iron (Fe), % 69.6 to 79
0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.6
0
Nickel (Ni), % 3.0 to 5.0
0
Niobium (Nb), % 0 to 0.45
0
Phosphorus (P), % 0 to 0.040
0.010 to 0.030
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Tellurium (Te), % 0
0.3 to 0.7