MakeItFrom.com
Menu (ESC)

EN 1.4542 Stainless Steel vs. C23000 Brass

EN 1.4542 stainless steel belongs to the iron alloys classification, while C23000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4542 stainless steel and the bottom bar is C23000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 5.7 to 20
2.9 to 47
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 550 to 860
220 to 340
Tensile Strength: Ultimate (UTS), MPa 880 to 1470
280 to 590
Tensile Strength: Yield (Proof), MPa 580 to 1300
83 to 480

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 860
170
Melting Completion (Liquidus), °C 1430
1030
Melting Onset (Solidus), °C 1380
990
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 16
160
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
39

Otherwise Unclassified Properties

Base Metal Price, % relative 13
28
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 39
43
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 160
6.2 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4360
31 to 1040
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 31 to 52
8.9 to 19
Strength to Weight: Bending, points 26 to 37
11 to 18
Thermal Diffusivity, mm2/s 4.3
48
Thermal Shock Resistance, points 29 to 49
9.4 to 20

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
84 to 86
Iron (Fe), % 69.6 to 79
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.6
0
Nickel (Ni), % 3.0 to 5.0
0
Niobium (Nb), % 0 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
13.7 to 16
Residuals, % 0
0 to 0.2