MakeItFrom.com
Menu (ESC)

EN 1.4542 Stainless Steel vs. C43500 Brass

EN 1.4542 stainless steel belongs to the iron alloys classification, while C43500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4542 stainless steel and the bottom bar is C43500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 5.7 to 20
8.5 to 46
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
42
Shear Strength, MPa 550 to 860
220 to 310
Tensile Strength: Ultimate (UTS), MPa 880 to 1470
320 to 530
Tensile Strength: Yield (Proof), MPa 580 to 1300
120 to 480

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 860
160
Melting Completion (Liquidus), °C 1430
1000
Melting Onset (Solidus), °C 1380
970
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
30

Otherwise Unclassified Properties

Base Metal Price, % relative 13
28
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 39
45
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 160
44 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4360
65 to 1040
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 31 to 52
10 to 17
Strength to Weight: Bending, points 26 to 37
12 to 17
Thermal Diffusivity, mm2/s 4.3
37
Thermal Shock Resistance, points 29 to 49
11 to 18

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
79 to 83
Iron (Fe), % 69.6 to 79
0 to 0.050
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.6
0
Nickel (Ni), % 3.0 to 5.0
0
Niobium (Nb), % 0 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.6 to 1.2
Zinc (Zn), % 0
15.4 to 20.4
Residuals, % 0
0 to 0.3