MakeItFrom.com
Menu (ESC)

EN 1.4542 Stainless Steel vs. C71640 Copper-nickel

EN 1.4542 stainless steel belongs to the iron alloys classification, while C71640 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4542 stainless steel and the bottom bar is C71640 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
52
Tensile Strength: Ultimate (UTS), MPa 880 to 1470
490 to 630
Tensile Strength: Yield (Proof), MPa 580 to 1300
190 to 460

Thermal Properties

Latent Heat of Fusion, J/g 280
240
Maximum Temperature: Mechanical, °C 860
260
Melting Completion (Liquidus), °C 1430
1180
Melting Onset (Solidus), °C 1380
1120
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 16
29
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 13
40
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.7
5.0
Embodied Energy, MJ/kg 39
73
Embodied Water, L/kg 130
280

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4360
130 to 750
Stiffness to Weight: Axial, points 14
8.7
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 31 to 52
15 to 20
Strength to Weight: Bending, points 26 to 37
16 to 18
Thermal Diffusivity, mm2/s 4.3
8.2
Thermal Shock Resistance, points 29 to 49
16 to 21

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
61.7 to 67.8
Iron (Fe), % 69.6 to 79
1.7 to 2.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
1.5 to 2.5
Molybdenum (Mo), % 0 to 0.6
0
Nickel (Ni), % 3.0 to 5.0
29 to 32
Niobium (Nb), % 0 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5