MakeItFrom.com
Menu (ESC)

EN 1.4542 Stainless Steel vs. C72500 Copper-nickel

EN 1.4542 stainless steel belongs to the iron alloys classification, while C72500 copper-nickel belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is EN 1.4542 stainless steel and the bottom bar is C72500 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
45
Tensile Strength: Ultimate (UTS), MPa 880 to 1470
420 to 780

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 860
210
Melting Completion (Liquidus), °C 1430
1130
Melting Onset (Solidus), °C 1380
1060
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 16
54
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
11

Otherwise Unclassified Properties

Base Metal Price, % relative 13
35
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.7
3.6
Embodied Energy, MJ/kg 39
55
Embodied Water, L/kg 130
320

Common Calculations

Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 31 to 52
13 to 24
Strength to Weight: Bending, points 26 to 37
14 to 21
Thermal Diffusivity, mm2/s 4.3
16
Thermal Shock Resistance, points 29 to 49
14 to 27

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
85.2 to 89.7
Iron (Fe), % 69.6 to 79
0 to 0.6
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0 to 0.2
Molybdenum (Mo), % 0 to 0.6
0
Nickel (Ni), % 3.0 to 5.0
8.5 to 10.5
Niobium (Nb), % 0 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.8 to 2.8
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.2