MakeItFrom.com
Menu (ESC)

EN 1.4542 Stainless Steel vs. C86700 Bronze

EN 1.4542 stainless steel belongs to the iron alloys classification, while C86700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4542 stainless steel and the bottom bar is C86700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 5.7 to 20
17
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 880 to 1470
630
Tensile Strength: Yield (Proof), MPa 580 to 1300
250

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 860
130
Melting Completion (Liquidus), °C 1430
880
Melting Onset (Solidus), °C 1380
860
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 16
89
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
17
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
19

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 39
49
Embodied Water, L/kg 130
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 160
86
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4360
290
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 31 to 52
22
Strength to Weight: Bending, points 26 to 37
21
Thermal Diffusivity, mm2/s 4.3
28
Thermal Shock Resistance, points 29 to 49
21

Alloy Composition

Aluminum (Al), % 0
1.0 to 3.0
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
55 to 60
Iron (Fe), % 69.6 to 79
1.0 to 3.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 1.5
1.0 to 3.5
Molybdenum (Mo), % 0 to 0.6
0
Nickel (Ni), % 3.0 to 5.0
0 to 1.0
Niobium (Nb), % 0 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
30 to 38
Residuals, % 0
0 to 1.0