MakeItFrom.com
Menu (ESC)

EN 1.4542 Stainless Steel vs. N08810 Stainless Steel

Both EN 1.4542 stainless steel and N08810 stainless steel are iron alloys. They have 67% of their average alloy composition in common.

For each property being compared, the top bar is EN 1.4542 stainless steel and the bottom bar is N08810 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 5.7 to 20
33
Fatigue Strength, MPa 370 to 640
160
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 550 to 860
340
Tensile Strength: Ultimate (UTS), MPa 880 to 1470
520
Tensile Strength: Yield (Proof), MPa 580 to 1300
200

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 440
490
Maximum Temperature: Mechanical, °C 860
1100
Melting Completion (Liquidus), °C 1430
1400
Melting Onset (Solidus), °C 1380
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 16
12
Thermal Expansion, µm/m-K 11
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 13
30
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.7
5.3
Embodied Energy, MJ/kg 39
76
Embodied Water, L/kg 130
200

Common Calculations

PREN (Pitting Resistance) 17
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 160
140
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4360
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 31 to 52
18
Strength to Weight: Bending, points 26 to 37
18
Thermal Diffusivity, mm2/s 4.3
3.0
Thermal Shock Resistance, points 29 to 49
13

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0 to 0.070
0.050 to 0.1
Chromium (Cr), % 15 to 17
19 to 23
Copper (Cu), % 3.0 to 5.0
0 to 0.75
Iron (Fe), % 69.6 to 79
39.5 to 50.7
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0 to 0.6
0
Nickel (Ni), % 3.0 to 5.0
30 to 35
Niobium (Nb), % 0 to 0.45
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 0.7
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6