EN 1.4542 Stainless Steel vs. S17400 Stainless Steel
Both EN 1.4542 stainless steel and S17400 stainless steel are iron alloys. Their average alloy composition is basically identical. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is EN 1.4542 stainless steel and the bottom bar is S17400 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 5.7 to 20 | |
11 to 21 |
Fatigue Strength, MPa | 370 to 640 | |
380 to 670 |
Poisson's Ratio | 0.28 | |
0.28 |
Shear Modulus, GPa | 76 | |
75 |
Shear Strength, MPa | 550 to 860 | |
570 to 830 |
Tensile Strength: Ultimate (UTS), MPa | 880 to 1470 | |
910 to 1390 |
Tensile Strength: Yield (Proof), MPa | 580 to 1300 | |
580 to 1250 |
Thermal Properties
Latent Heat of Fusion, J/g | 280 | |
280 |
Maximum Temperature: Corrosion, °C | 440 | |
450 |
Maximum Temperature: Mechanical, °C | 860 | |
850 |
Melting Completion (Liquidus), °C | 1430 | |
1440 |
Melting Onset (Solidus), °C | 1380 | |
1400 |
Specific Heat Capacity, J/kg-K | 470 | |
480 |
Thermal Conductivity, W/m-K | 16 | |
17 |
Thermal Expansion, µm/m-K | 11 | |
11 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.4 | |
2.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.8 | |
2.6 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 13 | |
14 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 2.7 | |
2.7 |
Embodied Energy, MJ/kg | 39 | |
39 |
Embodied Water, L/kg | 130 | |
130 |
Common Calculations
PREN (Pitting Resistance) | 17 | |
16 |
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 62 to 160 | |
140 to 160 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 880 to 4360 | |
880 to 4060 |
Stiffness to Weight: Axial, points | 14 | |
14 |
Stiffness to Weight: Bending, points | 25 | |
25 |
Strength to Weight: Axial, points | 31 to 52 | |
32 to 49 |
Strength to Weight: Bending, points | 26 to 37 | |
27 to 35 |
Thermal Diffusivity, mm2/s | 4.3 | |
4.5 |
Thermal Shock Resistance, points | 29 to 49 | |
30 to 46 |
Alloy Composition
Carbon (C), % | 0 to 0.070 | |
0 to 0.070 |
Chromium (Cr), % | 15 to 17 | |
15 to 17 |
Copper (Cu), % | 3.0 to 5.0 | |
3.0 to 5.0 |
Iron (Fe), % | 69.6 to 79 | |
70.4 to 78.9 |
Manganese (Mn), % | 0 to 1.5 | |
0 to 1.0 |
Molybdenum (Mo), % | 0 to 0.6 | |
0 |
Nickel (Ni), % | 3.0 to 5.0 | |
3.0 to 5.0 |
Niobium (Nb), % | 0 to 0.45 | |
0.15 to 0.45 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.040 |
Silicon (Si), % | 0 to 0.7 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.015 | |
0 to 0.030 |