MakeItFrom.com
Menu (ESC)

EN 1.4550 Stainless Steel vs. C85400 Brass

EN 1.4550 stainless steel belongs to the iron alloys classification, while C85400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4550 stainless steel and the bottom bar is C85400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
55
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 42
23
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 620
220
Tensile Strength: Yield (Proof), MPa 230
85

Thermal Properties

Latent Heat of Fusion, J/g 290
180
Maximum Temperature: Mechanical, °C 940
130
Melting Completion (Liquidus), °C 1430
940
Melting Onset (Solidus), °C 1390
940
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
89
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
22

Otherwise Unclassified Properties

Base Metal Price, % relative 18
25
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.6
2.8
Embodied Energy, MJ/kg 51
46
Embodied Water, L/kg 140
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
40
Resilience: Unit (Modulus of Resilience), kJ/m3 140
35
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 22
7.5
Strength to Weight: Bending, points 21
9.9
Thermal Diffusivity, mm2/s 4.0
28
Thermal Shock Resistance, points 14
7.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
65 to 70
Iron (Fe), % 64.9 to 74
0 to 0.7
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 9.0 to 12
0 to 1.0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
24 to 32
Residuals, % 0
0 to 1.1