MakeItFrom.com
Menu (ESC)

EN 1.4552 Stainless Steel vs. 3003 Aluminum

EN 1.4552 stainless steel belongs to the iron alloys classification, while 3003 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4552 stainless steel and the bottom bar is 3003 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
28 to 65
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 29
1.1 to 28
Fatigue Strength, MPa 150
39 to 90
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 510
110 to 240
Tensile Strength: Yield (Proof), MPa 200
40 to 210

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 960
180
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
640
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
180
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
44
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
140

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 3.6
8.1
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
0.95 to 63
Resilience: Unit (Modulus of Resilience), kJ/m3 100
11 to 300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 18
11 to 24
Strength to Weight: Bending, points 18
18 to 30
Thermal Diffusivity, mm2/s 4.1
71
Thermal Shock Resistance, points 11
4.7 to 10

Alloy Composition

Aluminum (Al), % 0
96.8 to 99
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
0.050 to 0.2
Iron (Fe), % 63.9 to 73
0 to 0.7
Manganese (Mn), % 0 to 1.5
1.0 to 1.5
Nickel (Ni), % 9.0 to 12
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.6
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15