MakeItFrom.com
Menu (ESC)

EN 1.4552 Stainless Steel vs. S43932 Stainless Steel

Both EN 1.4552 stainless steel and S43932 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4552 stainless steel and the bottom bar is S43932 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 29
25
Fatigue Strength, MPa 150
160
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Tensile Strength: Ultimate (UTS), MPa 510
460
Tensile Strength: Yield (Proof), MPa 200
230

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 490
570
Maximum Temperature: Mechanical, °C 960
890
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
23
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 19
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 52
40
Embodied Water, L/kg 150
120

Common Calculations

PREN (Pitting Resistance) 19
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
96
Resilience: Unit (Modulus of Resilience), kJ/m3 100
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 18
17
Thermal Diffusivity, mm2/s 4.1
6.3
Thermal Shock Resistance, points 11
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Carbon (C), % 0 to 0.070
0 to 0.030
Chromium (Cr), % 18 to 20
17 to 19
Iron (Fe), % 63.9 to 73
76.7 to 83
Manganese (Mn), % 0 to 1.5
0 to 1.0
Nickel (Ni), % 9.0 to 12
0 to 0.5
Niobium (Nb), % 0 to 1.0
0.2 to 0.75
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.75